) marble ' AD—A267 159 '

)
A Command Editor Tool .
for X and Motif
Design Document ’
July 1, 1993
Sponsored by »

Defense Advanced Research Projects Agency (DOD)

Defense Small Business Innovation Research Program
ARPA Order No. 5916

DTIC :

ELECTE -
JUL 2 81993 Issued by U.S. Army Missile Command
under Contract # DAAH01-93-C-R013
A Effective Date: January 15, 1993
Expiration Date: July 15, 1993 ’
prepared by ’
Patrick Dean Rusk, Minh Huynh, Greg Burd
Marble Associates, Inc.
38 Edge Hill Road
Thu document bas Boc bean T Waltham, MA 02154
b een qpp,ov d ’ .
j stlbuton s eomod solei e (617) 891-5555
!
‘\‘_.‘“—%_’
DISCLAIMER: The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the ®
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Govemnment.
8" 93-16748
IO a8

e ———

—’—

July 1, 1993

A Command Editor Tool for X
and Motif

MARBLE ASSOCIATES, INC.

The X/Motif design paper prepared for DARPA under
Contract # DAAH01-93-C-R013.

Design Document

Avanaiiiity Louus

]

Avail 4 ¢or
Drst Special
'
A-l
e ED B
. S

1.0 Executive Summary

Marble Associates, Inc., is engaged in the development of customizable menus in
Accesion for Y NEXTSTEP and the X windowing environment. In this document, we present the
‘L___Nn.é -EA&" d design and implementation path for realizing end-user customizable menus in X and

DTIC AR 3 Motif.
Sji‘f’t';:'ol";f":""j L The differences between the NEXTSTEP and X development environments motivate
psriemon e an approach to bringing customizable menus to X and Motif that differs from our
approach in NEXTSTEP. Initially, we intend to provide the basic functionality of cus-
BY » tomizing menus via modal dialog boxes, and we will investigate the feasibility of pro-
Di-tibation] viding the same functionality through drag and drop (DND) in later stages of our

implementation path.

We do not foresee any difficulties in the initial stage of our implementation. However,
the success of our DND effort is contingent on the flexibility of Motif. Specifically,
though “subclassing™ widgets is a known process, we must determine any loss of func-
tionality in the Motif widget set when we add functionalities to an existing widget
through this “subclassing” mechanism.

This rest of this paper is organized as follows.

e Background—This section provides a brief discussion of our work in realiz-
ing the Command Editor for NEXTSTEP.

* Functional Specification—This section introduces the functionalities we
intend to provide to the end-user and the interface we will present to the devel-

oper.
* Constraints—This section discusses the inner workings of the X window

system and Motif. Specifically, it focuses on the challenges we face in realiz-
ing the functionalities presented in the previous section.

* Implementation Path—This section presents the process by which we can
realize the desired functionalities in the face of system constraints. The pro-
cess is divided into stages that represent the evolution of our product from a

1o0t18

fhj

v A ..

marble
0%e%e

X/Motit Design Document for Contract # DAAH01-93-C-R013

2.0

minimal implementation based on Motif dialog boxes to one that employs
DND.

* Questions and Impact—This section discusses the critical issues that will
affect the implementation path.

* Related Documents—This section lists the other documents submitted under
Contract # DAAH01-93-C-R013.

¢ Sources—This section lists the sources used in our research.

Many of the terms and concepts in this document originate from the NEXTSTEP
implementation of the Command Editor. Subsequent discussions assume that the
reader is familiar with the documents listed in the “Related Documents” section and
has a general understanding of X and Motif. Despite the similarities in concepts and
goals, the implementations differ vastly, and we will introduce new terminology and
new names for this implementation to prevent any confusion and inappropriate analo-
gies.

Background

Our Phase I proposal drew inspiration from a Microsoft Windows application that pro-
vided a customizable menu bar; we thus focus on bringins this functionality to NEXT-
STEP, with the intention that we would do likewise for the X environment.

The rich toolset of the NEXTSTEP development environment facilitates efficient reuse
of existing functionalities and quick prototyping of a graphical interface on behalf of
the developer. Through Objective-C, the native language of NEXTSTEP, the developer
can easily subclass complex objects and inherit their functionalities with a few lines of
code. Through Interface Bui'der (IB), the developer can construct a graphical interface
to his application by dragging and dropping objects from “palettes” onto a canvas.
Through tools integrated into IB, the developer can integrate the interface with the ap-
plication logic.

In addition to these conveniences, the NEXTSTEP development environment is extend-
able, providing a process through which tool builders can easily integrate customized
objects into IB known as “paletting.” This integration, in turn, provides new functional-
ities to the developer in a manner keeping with the IB interface construction mecha-
nism: the user can drag and drop the customized objects onto his canvas as if they
were default system objects.

The Command Editor for NEXTSTEP provides customizable menus to the developer
through 1B, making use of the convenient “paletting” process. We construct the Com-
mand Editor itself using the subclassing methodology to bring new functionalities to
existing system classes while retaining inherited capabilities.

By contrast, the X development environment lacks many of these convenient mecha-
nisms. Bringing new functionalities to an existing widget type in X, also termed “sub-
classing” a widget, entails rewriting that widget. This could encompass hundreds of
lines of code and is necessary since the native language of X is C. Furthermore, X
lacks a standard development methodology that would allow us to present the Com-
mand Ediror in a packaged form. Any toolset for the X environment, typically consist-

A Command Editor Tool for X and Motif 20118

(2

™ 3

K 4

marble
0% %

X/Motif Design Document for Contract # DAAH01-93-C-R013

ing of modified system widgets, provides to the developer the full sonrce listing for
that widget set.

The impact this has on our effort is two-fold. First, we cannot target the same level of
functionality for the Command Editor here as we did for NEXTSTEP. Second, we can
only provide the final product as complete source code. Though we will provide exam-
ples, the process of integrating our components into the application is left compietely
up to the developer.

Functional Specification

Our objective is to provide to the developer a mechanism by which he can integrate
customizable menus into his Motif application. This mechanism allows the end-user to
customize the application’s menu system at runtime. The implementation path for the
Command Editor divides our development effort into two stages defined by the func-
tionality it brings to the user. We discuss the functional differences between the two
stages from the perspectives of the user and developer in the following sections.

End-user Functionality

The functionality targeted in the initial development stage allows the end-user to do
the following at runtime:

* rename, add, and remove menu items from a Motif menu curtain;
» specify accelerator keys and mnemonics for a menu item;
¢ add and populate submenus; and

* load Motif buttons with iconic representations of menu items.

A series of Motif dialog boxes will facilitate these functions. The user selects the
“Menu” item from the “Customize” cascade button in the menu bar and brings forth
the CEMenuConfigurator (Figure 1). This selection dialog box contains a hierarchi-
cal list of menu items representing the current configuration of the application menu
system. The user then selects an entry from the browser and specifies its mnemonic
and accelerator key. Entries designated as “default” by the developer are not customiz-
able and will be “grayed out” by the CEMenuConfigurator. The user can also
remove the menu item or add a new menu item under the selection. Selecting “Add”™
will activate the CECommandBrowser, a selection dialog box that displays a hierar-
chical listing of the full set of commands configured by the developer (Figure 2). The
user can now peruse the set of commands available and select the additional menu
item.

The user can similarly add a cascaded menu curtain by selecting the “Submenu”
button, which activates a popup dialog box that contains a text entry field, allowing the
user to enter the submenu title. The user can populate the submenu via the “Populate-
Submenu” button.

A Command Editor Tool for X and Mot Sof 18

e@e ®

@\.

—— -
m arbl e X/Motit Design Document for Contract # DAAH01-83-C-R013
0%e%e
FIGURE 1 The CEMenuConfigurator in Motif: An Approximation
FIGURE 2

To configure the CECommandToolButtons provided by the developer, the user
selects “Tools™ from the “Customize” cascade button in the menu bar. This selection
changes the cursor to a “Customize Tools™ cursor, indicative of the special mode the

A Command Editor Tool for X and Motif 40f18

ma rb | e XMotif Design Document for Contract # DAAH01-93-C-R013

N g - g
.

3
Kl
i
i

vser has just entered (Figure 3). The user then selects a CECommandToolButton !

with the mouse and, in doing so, activates a dialog that allows the specification of a :
menu command that button is to trigger. The CECommandToolButton now displays)
the icon associated with the selected menu command.

The second stage of our development cycle will provide DND functionality to the end- %
user. The user can now configure the menu system by dragging a menu item from the |
CECommandBrowser onto the CEMenuConfigurator (Figure 4). The user will cus- i
tomize CECommandToolButtons in similar fashion—by dragging a menu item from !
the CECommandBrowser onto a CECommandToolButton (Figure 5).

FIGURE 3 Customization of CECommandToolButtons in Motif: An Approximation

)
) o
)
“Customize Tools" cursor
CECommandToolButtons
]
’
]
A Command Editor Tool for X and Motif Sof18

[
ma l'bl e XMotif Design Document for Contract # DAAH01-93-C-R013
0%e®%e
»
FIGURE 4 Customization of Menus in Motif via DND: An Approximation
Y]
»
»
»
»
FIGURE 5 Customization of CECommandToo!Buttons in Motif via DND: An Approximation
»
»
»
»
A Command Editor Tool for X and Motif 6of 18
»
S ITUT— S S ———]

marble
0%e%e

XMotit Design Document for Contract # DAAH01-93-C-R013

3.2

Developer Interface

The Command Editor in X and Motif provides a framework in which the developer uti-
lizes our components to facilitate customizable menus. This framework consists of
source modules and guidelines that, together, dictate specific methods the developer
must employ. This organization results directly from the lack of a standard develop-
ment environment for the X and Motif community. We simply cannot provide the Com-
mand Editor as a custom palette in a particular interface building tool; doing so would
require the developer to purchase additional software. Any loss of flexibility on behalf
of the developer results from the constraints of the X window system and Motif.

In contrast, NEXTSTEP provides the developer with a uniform methodology for writ-
ing graphical applications. This methodology is the framework presented by Interface
Builder, which is included in every installation of NEXTSTEP. This provision, in turn,
allows tool developers to provide to application developers new functionalities. These
new functionalities are packaged in a manner that facilitates ease of integration—
through IB itself.

The CECommandBrowser and CEMenuConfigurator are special purpose Motif dia-
logs that the developer must integrate into his application code. Example code will be
provided to illustrate this integration.

The developer must create menus through a prescribed interface. Though the resulting
menus will be standard Motif Widgets, the configuration data must be maintained by a
module in the Command Editor, and the standard Motif method of creating menus is
no longer available to the developer should he desire customizable menus. The devel-
oper fills in a CEMenuCell structure with customizing parameters (default, config-
urable, icon, description, erc.) in addition to standard Motif information (title,
accelerator key, mnemonic, and callback). This CEMenuCell can then be loaded into
the Command Editor through an CEAddMenultem call. Parameters to this call reveal
the placement of the new CEMenuCell in the menu hierarchy. The developer employs
this menu creation process to compose the full set of available commands as well as to
configure the default application menu system.

Once the appropriate components are developed, we intend to provide a Motif tool that
allows the developer to compose the hierarchical menu system visually. The developer
can specify menu item order, titles, mnemonics, accelerator keys, and submenu topolo-
gy. Callbacks and icons associated with each menu item will be stubbed out for the de-
veloper to fill in later. The resulting configuration will be formatted such that the
developer can integrate the menus into the application. This facility will be used to con-
figure both the application menu and the full set of commands available for customiza-
tion.

The CECommandToolButtons necessitate a separate mechanism to allow the devel-
oper to place themn anywhere in the application and to enable customization by the end-
user at runtime. The developer creates a CECommandToolButton as a standard Motif
PushButton. The developer configures CECommandToolButtons in the standard Mo-
tif way—setting the widget’s resources explicitly to determine the label or pixmap dis-
played and the callback procedure that the button invokes. To capture the customiza-
tion capability, the developer must register the resulting Motif widget with the
Command Editor.

A Command Editor Tool for X and Motif Tof18

marble
0®0%e

XMotlf Jesign Document for Contract # DAAHO01-93-C-R013

4.0

The second stage of our development will not modify the interface to the developer.
Composition of the full set of commands available to the end-user and configuration of
the initial menu system will adhere to the methods detailed in the previous discussions.

Constraints

4.1

From the developer’s perspective, the X window system consists of two layers of librar-
ies: X1lib and Xt. While the routines in the Xlib layer handle the low level duties required
to display windows on a screen, the calls in Xt provide a measure of abstraction for the
developer. Xt packages many of the sequences of Xlib calls that typify an X application
into convenience functions. In addition, Xt provides Widgets (screen elements) such as
buttons, scrollbars, and forms that are useful to a developer. Motif and Open Look are
additional layers that enforce a particular interface style (the placement of menus, but-
tons, and scrollbars in an application) and furnish their own set of convenience functions
to implement those styles. The motivation for conforming to a particular interface style
is acceptance of the application by users of that style. An additional motivation for work-
ing above the Motif and Open Look layers is the availability of convenience functions
that not only implement the particular style but also save the developer from reams of Xt
code necessary to produce functionally equivalent visual elements (menus, text widgets,
etc.). We focus our efforts at this top layer and will develop in Motif, since Motif is by
far the most widely accepted interface style in the Unix community, undoubtedly outpac-
ing Open Look in user acceptance and number of conforming products.

The X Development Environment

The lack of object-oriented technology in X (and consequently Motif) poses serious
constraints on our development effort. The layered architecture of X, which affords it
portability and remote display capability, is not abstracted from a developer’s point of
view. Indeed, Motif applications are allowed to make calls to all layers of the X envi-
ronment, These applications are “Motif” only in look—using resources defined in the
Motif libraries that define this look. Motif calls simply map to Xt calls.

This allowance violates the basic tenets of object-oriented development. The dependen-
cy between the application layer on all layers of the X and Motif environment inhibits
reuse. For instance, X lacks a generic hierarchical display widget that allows the user
to traverse and select items from a tree. Development of such a widget will be specific
to the data type of the nodes. There is no concept of messaging objects in X. The lack
of this capability dictates that the hierarchical display widget knows the type of the
data node explicitly in order to (1) display the text label of the node and (2) traverse
the tree.The Motif FileSelectionDialog widget, for instance, is closely tied to the Unix
file system and cannot be customized to display any other hierarchy.

One key contributor to the lack of object-oriented design of X is the C programming
language itself—through which X presents itself. Objects do not truly exist in the X en-
vironment in that they cannot be sent messages. The application simply links in library
calls to the underlying layers. “Object instantiation™ entails the processing of all li-
brary calls that allocate memory for the data structure and sets its resources. “Subclass-
ing” a widget entails copying the widget’s definition files and modifying its resource
values. The term “subclassing a widget” is synonymous with rewriting a widget, where
the developer must provide extensive code to do all of the following:

A Command Editor Tool for X and Motif gof 18

marble
o®%e®%e

XMotit Casign Document for Contract # DAAH01-93-C-R013

4.2

¢ modify the widget’s resource list, effectively adding instance data;
* implement the initialization procedure to set instance data;

+ implement the drawing procedures to resize and expose the screen element;
and

* implemert all widget specific actions that are performed given some user in-
put.

This replication of code, even by include files, is not efficient reuse. Furthermore, the
term “subclass” implies inheritance in object-oriented technologies, whereby sub-
classed objects obtain functionalities of their parent class. Copying definition files of X
widgets allow the functionalities to replicated in any new widget. The availability of
the same capability in Motif is unclear. For instance, the Motif implementation of
menus is private, and subclassing the components of a Motif menu may compromise
functionality. In short, subclassing does not necessarily imply inheritance in Motif.

By contrast, the object-oriented design of NEXTSTEP and even SmallTalk affords the
developer the capability to augment existing system objects rapidly with inheritance of
functionality. Many of these system objects correspond to widgets, providing a graphi-
cal interface and handling user input. In addition, subclassing objects and providing
new methods entails little work in Objective-C (NEXTSTEP) and even less work in
SmallTalk relative to the X environment. In summation, the realization that we can
modify the development environment quickly and preserve existing functionality al-
lows us to target a higher level of functionality in the Command Edi:or for NEXT-
STEP.

Motif Menu Usage

A Motif application creates its menu system by creating a form widget and attaching it
10 the application window. This form widget is the application’s menu bar. The applica-
tion then creates individual CascadeButtons to populate the menu bar. A Motif Pull-
DownMenu is then created and populated with individual PushButtons that represent
m ~u cells. The PullDownMenu is then associated with a CascadeButton. Figure 6 il-
lustrates the relationships among these widget classes. The code to implement a menu
bar follows (Figure 7).

A Command Editor Tool for X and Motif 9oft8

marble
0%0%e

XMotHf Design Document for Contract # DAAHO01-93-C-R013

FIGURE ¢

The Layout of Standard Motif Menus

FIGURE 7

Using Motif Menus
void main(argc,argv)
int argc;
char *argv();
{
Arg al(10);
int ac:

Widget menu_bar, cascade, fileMenu, openPB, closeCB;

/* create the toplevel shell */
toplevel = XtAppInitialize(&context,®* ,NULL, O, &ac,
argv,.NULL,NULL, 0} ;

/* create a form widget */

ac=0;
form=XmCreateForm{toplevel, "form",al, ac):
XtManageChild(form);

/* czreate the menu baxr */

acs0;

senu_barsXmCreateMenuBar{form, *menu_bar®,al,ac);
XtManageChild (menu_bar);

/* attach the menu bar to the form */
acs0;
XtSetArg(al[ac], XmNtopAttachment , XmMATTACH_FORM) ; acCe«+;

A Command Editor Tool for X and Motif

100t 18

-~

marble
0%e%e

X/Motif Design Document for Contract # DAAH01-93-C-R013

XtSetArg(al[ac), XmNrightAttachment, XmATTACH_FORM);: ac++;
XtSetArg(al[ac],XmNleftAttachment., XmATTACH_FORM); ac++;
XtSetValues (menu_bar,al,ac);

/* creats the Cascadebutton */
XtSetArg(al(ac],XmNlabelString,

XmStringCreateLtoR(menu_name, char_set)); ac++;
cascadesI reateCascadeButton (menu_bar,minu_name,al,ac);
XtManageChild (cascade) ;

/* cxesate the PulldownMenu */
fileMenusInCreatePulldownienu (menu_bar, “rile~, NULL,0);

/* associate ths PulldownMenu with the CascadeButtom */
XtVaSetValues (cascade, XmNsubMenuId, fileMenu, NULL),

/* populate “File” PulldownMenu */

ac = 0;

XtSetArg(al{ac],XmNlabelString,
XmStringCreateLtoR({"0Open”,char_set)); ac++:

openPB=XmCreatePushiutcon(fileMenuy, “Open”,al,ac);

XtManageChild(openPB);

xXtAddCallback (openPBs, XmNactivateCallback, opencCs,client_data);

XtSetSeasitive (openPs, True);

ac = 0;

XtSetArg(al{ac),XmNlabelString,
XmStringCreateLtoR{"Close”.char_set)): ac++;

closePBsXmCreatePushbutton(fileNenu, “"Close~,al,ac);

XtManageChild(closePB);

XtAddCallback(closePB, XmilactivateCallback,
closeCB,client_data);

XtSetSensitive (closePs, Txue);

XtRealizeWidget (toplevel};
XtAppMainLoop (context) ;

Menu items (Open, Close) are displayed from top to bottom in the order they are creat-
ed. In fact, the PulldownMenu widget is actually a Motif RowColumn widget with its
resources set to act as a pulldown menu. While additional resources can specify the ori-
entation (vertical or horizontal) of the PulldownMenu, child widgets are always or-
dered in the sequence they are created. No method is available to insert a menu item
(PushButton) in a specific location. To allow the user to add and delete menu items at
runtime, the Command Editor will destroy and recreate the entire PulldownMenu wid-
get with new configuration data. Though this inefficiency is incurred only when the
user customizes the menu system and hence will not affect the application’s perfor-
mance, we will nevertheless investigate alternatives to recreating the PulldownMenu
widget.

Motif menus are modal and do not facilitate drag and drop customization. Whether
Popup, PullDown, or PullRight, a “‘posted” (visible) Motif menu does not allow the
user to interact with the application until the menu curtain is “unposted.” The unpost-
ing occurs when (1) the user selects a menu item or (2) the user makes an invalid selec-
tion outside the menu curtain altogether. Motif does provide the TearOff menu,
however, which remains posted even after the user makes a selection. TearOff menus

A Command Editor Tool for X and Motif 11 0of 18

marble
0%e%e

XMotit Design Document for Contract # DAAH01-93-C-R013

43

mimic the NEXTSTEP style of menus by remaining on the screen throughout the ap-
plication’s runtime.

We can accomplish 4rag and drop customization of Motif menus in three ways.

¢ TearOff Menus — This method requires the developer to designate all customi-
zable menus as TearOff menus and similarly requires the user to tear off
menu curtains before attempting customization. The user can drag a new
menu item (or submenu item) directly onto the posted TearOff menu. Con-
versely, the user can <Control> drag to remove menu items. This functional-
ity poses several challenges. The first is simply subclassing the Motif TearOff
menu to add DND logic. The second challenge involves updating a modified
TearOff menu to reflect additions and deletions. An additional challenge is
the communication between the TearOff menu and its PulldownMenu repre-
sentative in the application menu bar; the PulldownMenu must reflect any ad-
ditions or deletions made to the TearOff menu.

* Posted Menus — This method allows the user to drag a menu item onto the
menu bar. While continuing the drag, the user can activate a drag-sensitive
cascade button in the menu bar, which pulls down its menu curtain. The user
can then drag into the menu curtain, position the drag icon, and drop the
menu item to be added. Once again, subclassing the Motif menu (now Pull-
downMenu) to add DND logic is key. The CascadeButtons will also need to
be sensitive to DND,

* Special Purpose Shells — This method allows the user to drag a menu item
onto a representation of the menu system. This representation, possibly imple-
mented as a hierarchical brc vser, will detect the drop, calculate the mouse po-
sition relative to its displayed menu items, and add the menu item to the
actual menu system. This method involves developing a hierarchical browser
cap=ble of DND.

Our design will adopt the last method, the motivations for which include reusability of
the drag-initiating hierarchical browser developed to display the developer’s full set of
commands and simplicity of implementation. This browser is necessary in all three
methods. The development of the DND hierarchical browser will itself entail widget
subclassing and allow us to assess the feasibility of the other two methods.

Motif Menu Implementation

Our concern for the difficulty of the first two drag and drop methods described above
stems from the opacity of Motif’s implementation of menus. The following is an ex-
cerpt from Volume 6 of the O'Reilly and Associates “X Window System” series, Motif
Ercgramming Manual:

“Motif does not use Xt’s normal methods for creating and managing
menus. In fact, you cannot use the standard Xt methods for popup
menu creation or management without virtually reimplementing the
Motif menu design...Instead, the Motif toolkit abstracts the menu cre-
ation and management process into generic routines that make the
menu opaque to the programmer; the internal implementation is irrele-
vant.”

A Command Editor Tool for X snd Mot 120f 18

maible
0%e%

XMotif Design Document for Contract # DAAH01-93-C-R013

5.0

This statement implies that we may not be able to subclass Motif menu components
such as PullDownMenu and add functionality via Xt routines. For instance, subclass-
ing the PullDownMenu and adding DND logic may prohibit the attachment of the al-
tered PullDownMenu to the CascadeButton in the menu bar The feasibility of
implementing Motif menus with augmented widgets is unclear.

Implementation Path

5.1

Initial Development Stage

This stage of development targets a fully functional Command Editor package that al-
lows the end-user to customize menus through modal dialog boxes. We begin by imple-
menting the underlying logic of the package and conclude by developing the graphical
tools for the end-user and developer.

Underlying Logic

The central module responsible for storing the developer’s configuration of commands
and processing the end-user’s customizations is the CEController. This unit maintains
two hierarchical structures: a list of commands composed by the developer and another
list representing the application’s current menu configuration. The CEController pro-
vides an interface through which these lists are composed, traversed, and manipulated.
In this initial phase, the CEController also mainta'ns the list of Command Tool But-
tons available to the user for customization (Figure 8).

In the process of realizing the CEController, we must first define the atomic unit that
represents a command. The CEMenuCell from our NEXTSTEP implementation will
be used in this migration of the Command Editor to X and Motif, with slight modifica-
tion. While the NEXTSTEP CEMenuCell embodied a “menu item” object, complete
with PushButton functionality, the Motif equivalent will be implemented as a structure
instead of a subclassed widget. Widgets are created relative to some parent widget and
this relationship dictates the placement of the child widget on the screen. The CEMe-
nuCell structure will contain information as to the title, mnemonic, accelerator key,
drag icon, default status, reconfigurability, and activation callback of the command.
The CEController will parse the CEMenuCell structure to create the appropriate
PushButton in the application’s menu structure.

The hierarchy of CEMenuCells and the CEMenuCells themselves will be stored in a
directed acyclic graph (DAG). There are two such lists: the CECommandDAG, which
stores the developer’s composition of the full set of commands available to the end-
user, and the CEMenuDAG, which mirrors the current menu configuration. The CE-
Controller will provide the interfaces to its DAGs to the developer and other compo-
nents of the Command Editor.

The CEController will provide the developer with interfaces to its CECommand-
DAG and CEMenuDAG. These interfaces make possiblc the composition and configu-
ration of both DAGs without the CECommandComposer discussed in subsequent
sections.

A Command Editor Tool for X and Motif 130f 18

marble
0®%e®e

X/Motif Design Document for Contract # DAAH01-93-C-R013

The CECommandBrowser, which allows the user to traverse and select from the full
set of commands available, will use a subset of the developer’s interface to the CE-
CommandDAG.

Lastly, the CEController will provide to the CEMenuConfigurator an interface
through which the application menu structure is customized at runtime. Each customi-
zation call in this interface will modify the CEMenuDAG and, in addition, make the
appropriate Motif calls to put the customization into effect.

FIGURE 8

The Command Editor for X and Motif: The Underlying Logic

Application Space
le Application
CEController
CECommandDAG
CEMenmuDAG \ Bt] [Sceak]
~0 CECommandT 4o
—Chicken | —{Ribs
B — S |
HM&d I
_ CECommandBrowser
g} et)
| | {Spom]
Displays aad manipuleatss

5.1.2 The Hierarchical Browser

Despite the plethora of widgets provided by X and Motif, we are unaware of any wid-
get that facilitates the display and manipulation of a hierarchical structure. ldeally,
such a widget would operate on a generic datatype—a tree of items—and only require
that the tree implement a small set of functions, namely a display function and some
traversal routines. Such a widget will allow graphical traversal of the tree and selection
of tree nodes. The Motif FileSelectionDialog fulfills the desired functionality for a
Unix file system. Whether this canned widget can be permuted to display and traverse
a generic tree structure is unclear. We will investigate this possibility while actively
searching the Internet and other sources for a generic hierarchical browser widget. If
both efforts are unfruitful, we will develop the browser from a collection of Motif wid-
gets.

A Command Editor Tootl for X and Motit 140f 18

marble
0%e%

X/Motif Design Document for Contract # DAAH01-93-C-R013

5.2

Once the generic hierarchical browser is available, we will integrate the browser with the
CEController and its DAGs. The browser will interact with the CEController through
the interface defined for the DAGs to display and compose CEMenuCells. By the com-
pletion of this step, the generic browser has effectively been subclassed into the CE-
MenuTreeBrowser.

End-user Toois

The CEMenuTreeBrowser will be instantiated and incorporated into dialog boxes to
provide configuration tools to the end-user. The CECommandBrowser dialog box al-
lows the end-user to traverse and select from the full set of commands configured by
the developer. The CEMenuConfigurator dialog box will display the current applica-
tion menu structure and allow the user tc modify this menu structure’s configuration.
The CEMenuConfigurator, in particular, will need to communicate user customiza-
tions to the CEController, which, in turn, will manipulate the application menu struc-
ture to reflect the user’s modifications.

Developer Tools

The CEMenuTreeBrowser will be incorporated into a dialog that facilitates the devel-
oper’s composition of the full set of commands available to the end-user at runtime.
This dialog, the CECommandComposer, also allows the developer to configure the
default menu structure that is initially displayed in the absence of user customization.
The CECommandComposer will write the command hierarchy in a format palatable
to the CEController. We will also develop an ingest procedure by which the CECon-
troller can (1) reconstruct the full set of commands at runtime and (2) reconstruct the
application menu structure at runtime.

A Special Case

The CECommandToolButton is an interesting implementation departure for the Com-
mand Editor. While the menu system relies on the CEController to update its configu-
ration and resources, the CECommandToolButton handles the customization itself.
When the user selects the “Tools”™ item in the application “Customize™ menu, the call-
back invoked will set all registered CECommandToolButtons to “Customize Tools”
mode. The CECommandToolButtons will register a special callback to bring forth
the CECommandBrowser when activated. The user then selects the target CECom-
mandToolButton and the CECommandBrowser becomes visible. The user then se-
lects the desired command and the targeted CECommandToolButton registers the
new resource data unto itself. This mechanism is an elaboration of callback chaining.
The only dependency on the CEController occurs in the initial stage of obtaining the
full list of registered CECommandToolButtons. This is the motivation for the require-
ment that the developer register all CECommandToolButtons with the Command Edi-
for.

Adding Drag and Drop

This stage of our development effort targets the DND capability of Motif by augment-
ing the components developed in the previous stage. To add the functionality discussed
in Section 2.1, the following tasks need to be completed.

A Command Editor Tool for X and Motit 150f 18

T

marble
0909

X/Motif Design Document for Contract # DAAH01-83-C-R013

e The CECommandBrowser needs to be cognizant of drag starts and capable
of transferring the correct data to the drop site. The OSF/Motif Programmer’s
Guide outlines the procedures necessary for dragging. Specifically, button
translations will be added to allow the user to use a particular mouse button to
initiate a drag. We also need to set the drag icon to indicate the type of data
the drag represents. Finally, the drag start site needs to format and transfer the
drag data to the drop site.

¢ The CEMenuConfigurator needs to process drag drops and communicate
configuration changes to the CEController. To do this, the CEMenuConfigu-
rator must register itself as a valid drop site for the CEMenuCell data type,
register the operations it is capable of performing (COPY, LINK, MOVE),
and implement the callbacks to process the drop. Likewise, the CEMenuCon-
figurator will process drag starts to allow the user to remove menu items
from the hierarchy.

¢ The Command Tool Button will be implemented as a subclass of PushButton
with additional methods that allow the user to drag a command onto the but-
ton and configure its icon and callback procedure via the subsequent drop.
The procedures to implement a drop-sensitive PushButton are analogous to
those for the CEMenuConfigurator. The CECommandToolButton, howev-
er, will not communicate its configuration changes to the CEController. Rath-
er, it can simply modify its own icon and callback procedure. By the
completion of this stage, the developer will no longer need to register each
customizable CECommandToolButton with the CEController; he can sim-
ply instantiate the button and place it anywhere in the application.

6.0 Questions and Impact

This section relates the concerns raised in the section “Constraints” to the implementa-
tion path we envision. The critical issues, whose resolution will alter the course of our
implementation, are

¢ the utility and difficulty of widget subclassing,

* the feasibility of customizing Motif menu components while retaining stan-
dard menu functionality,

* the availability of a hierarchical browser, and
* the ease of adding DND to a widget.

We have charted an implementation path that minimizes the impact of the aforemen-
tioned issues. The only assumptions necessary for the success of our development are
the latter two issues: that a hierarchical browser will be available and that DND logic
can be integrated into a widget with relative ease. The first two issues, should they be
resolved favorably, will redirect our development effort to provide improved function-
ality to the user. In short, our implementation path prepares for the worst and targets
the maximum functionality given that assumption.

Aside from the critical issues, a few considerations remain for later revisions of our
package. We have purposefully omitted a few issues in the previous discussions that
detract from the intent of our design. One such issue is the Motif PushButton’s com-

A Command Editor Tool for X and Motif 16 of 18

marble
0%0%

XMotif Design Document for Contract # DAAH01-93-C-R013

7.0

plete set of resources—class resources as well as inherited resources. We have limited
our discussions of customizing a menu item and CECommandToolButton to title,
callbacks, icons, mnemonics, and accelerator keys. We could just as easily incorporate
the full set PushButton resources. For instance, a PushButton that senses multiple
clicks can be customized to perform a specific action on a Gouble-click. A concern is
raised on the behalf of the CEController, which affects the user’s customizations by
overriding an existing PushButton’s resources. The CEController must now modify
all resources to ensure that a menu item does not exhibit the mixed behavior indicative
of two dissimilar resource sets.

Motif also allows PopUp menus. We have not determined what customizing functional-
ity to provide for PopUp menus. Customizing PopUp menus would most likely be
done via a representation of the PopUp menu with drag and drop.

We have not incorporated multiple states in this discussion of the Command Editor. Im-
plementation of multiple states entails keeping a set of callbacks and titles with each
CEMenuCell. This, as well as the previously mentioned features, can be added in lat-
er revisions of our package.

Related Documents

8.0

A Command Editor Tool for NEXTSTEP and X-Windows Systems (SBIR Phase 1 Pro-
posal) for DARPA/OASB/SBIR, Submitted on July 1, 1992.

A Command Editor Tool for NEXTSTEP and X, Quarterly Status Report under Con-
tract # DAAHO01-93-C-R013, Submitted on April 26, 1993.

A Command Editor Tool for NEXTSTEP, Final Report under Contract # DAAH01-93-
C-R013, July 1, 1993.

The Command Editor: A Manual for Users and Developers, under Contract #
DAAHO01-93-C-R013, July 1, 1993.

End-user Customizable Menus in the X Windowing Environment (SBIR Phase 11 Pro-
posal) for Contract # DAAH01-93-C-R013, July 1, 1993.

Sources

Brain, Marshall MOTIF FROGRAMMING The Essentials and More Digital Press,
1992, ISBN 1-55558-089-0

Flanagan, David Progrs R by
System O'Reilly & Assocmes. Inc. 1991 ISBN 0-937175-86-2

Heller, Dan Motif Programming Manual O'Reilly & Associates, Inc. 1992, ISBN 0-
937175-70-6

Nye, Adrian Xlib Programming Manual O'Reilly & Associates, Inc. 1990, ISBN 1-
56592-002-3

A Command Editor Tool for X and Motif 170l 18

~ M -

.

marble
0%e®%e

X/Motit Design Document for Contract # DAAH01-93-C-R013

Nye, Adrian XToolkit Intrinsics Programming Manual O'Reilly & Associates, Inc.
1992, ISBN 1-56592-013-9

Nye, Adrian Motif Programming Manyal O'Reilly & Associates, Inc. 1992, ISBN 0
937175-70-6

OSF/Morif Programmer’s Guide, Release 1.2 Prentice Hall 1993, ISBN 0-13-643107-0

A Command Editor Tool for X and Motif 18of 18

/

M

¢ A

